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Abstract: Quantitative precipitation estimates (QPE) derived from weather radars provide spatially

and temporally highly resolved rainfall data. However, they are also subject to systematic and random

bias and various potential uncertainties and therefore require thorough quality checks before usage.

The dataset described in this paper is a collection of precipitation statistics calculated from the hourly

nationwide German RADKLIM and RADOLAN QPEs provided by the German Weather Service

(Deutscher Wetterdienst (DWD)), which were combined with rainfall statistics derived from rain

gauge data for intercomparison. Moreover, additional information on parameters that can potentially

influence radar data quality, such as the height above sea level, information on wind energy plants

and the distance to the next radar station, were included in the dataset. The resulting two point

shapefiles are readable with all common GIS and constitutes a spatially highly resolved rainfall

statistics geodataset for the period 2006 to 2017, which can be used for statistical rainfall analyses

or for the derivation of model inputs. Furthermore, the publication of this data collection has the

potential to benefit other users who intend to use precipitation data for any purpose in Germany and

to identify the rainfall dataset that is best suited for their application by a straightforward comparison

of three rainfall datasets without any tedious data processing and georeferencing.

Dataset: Available at Zenodo data repository, DOI:10.5281/zenodo.3262172. (https://zenodo.org/recor

d/3262172)

Dataset License: CC-BY-SA 4.0

Keywords: weather radar; rain gauge; precipitation; QPE; RADOLAN; RADKLIM; GIS

1. Summary

Rainfall is a major driver for many environmental processes. The operational monitoring and

management of water resources as well as the modeling of many water-related processes require

spatially and temporally highly resolved rainfall data [1].

Weather radar systems can provide such highly resolved data, but due to the indirect measurement

technique, radar data are also subject to systematic and random bias and various potential uncertainties.

In the last two decades, much progress has been achieved in the derivation of quantitative precipitation

estimates (QPE) from weather radar reflectivity data through the development of new algorithms.

These led to improvements in reflectivity data correction (removal of clutter, e.g., due to wind energy
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plants, ground echoes, attenuation correction, detection of spokes and erroneous bright band echoes,

etc.), conversion from reflectivity to precipitation heights, adjustment to rain gauge data and the

creation of gridded composites from the local radar station data (e.g., [2–7]).

In Germany, the operational RADOLAN (“Radar Online Adjustment”) program was launched by

the German Weather Service (Deutscher Wetterdienst (DWD)) in June 2005 [8,9]. It provides hourly

radar-based QPEs adjusted to rain gauge data on a nationwide 1 km grid (called RW product) as well

as unadjusted QPEs with temporal resolutions up to 5 min. Though these RADOLAN composite

data are a considerable improvement for spatially and temporally highly resolved rainfall monitoring,

the QPEs still contain systematic errors and significant clutter. Moreover, data processing and correction

algorithms as well as the radar hardware have been continuously developed since the launch of the

program, which is why the RADOLAN dataset constitutes an inhomogeneous time series [10]. The data

are mainly used for rainfall monitoring and operational water management and warning procedures,

whereas they are still rather sparsely used in scientific research.

In 2018, the DWD published a reanalysis of all their radar data back to the year 2001 using consistent

processing techniques, several new correction algorithms, and more rain gauges for adjustment. This

radar climatology dataset called RADKLIM has been developed with the intent to enable radar-based

climatological research and especially heavy rainfall analyses [10]. Besides hourly gauge-adjusted

QPEs (are also called RW) [11], the radar climatology also comprises quasi-adjusted QPEs in a 5-minute

resolution called YW [12].

The dataset described in this paper is a collection of precipitation statistics we calculated from

the hourly nationwide RADKLIM and RADOLAN RW products which were combined with rainfall

statistics we derived from DWD rain gauge data for intercomparison. The precipitation statistics

include annual precipitation sums for the years 2006 to 2017, mean annual sums, mean seasonal sums

per hydrologic half-year, the number and mean rainfall height of days exceeding a daily precipitation

amount of 1 mm and 20 mm sub-divided by half-years, the number of NoData values, and several

additional information on parameters that can potentially influence radar data quality. These include

the height above sea level, the number, average height and diameter of wind energy plants per pixel

and the distance to the next radar.

The rainfall data intercomparison dataset is shared via two vector format point shapefiles collected

in a zip archive hosted at Zenodo data repository. The dataset was collected and is currently being

analyzed as part of a study aimed at the evaluation of the German radar climatology. The publication

of this data collection has the potential to benefit others who intend to use precipitation data for any

purpose in Germany and who need to know which rainfall dataset is best suited for their analysis

period and study area. The quality and completeness of precipitation datasets differs in time and

space due to missing or erroneous data, changes or gaps in the network of measuring devices as

well as seasonal and environmental influences such as topography, temperature or origin and type

of precipitation. With a range of different datasets available (which also include satellite-based and

spatially interpolated precipitation data not considered in this data collection), researchers often need

to identify the best suited rainfall dataset for their application, which may be a time-consuming task

that already involves a significant amount of data processing. The dataset presented in this paper can

help researchers make a decision by providing a straightforward comparison of three rainfall datasets

without any tedious raw data processing and georeferencing. Though, when evaluating the datasets

against each other, it has to be considered that they are not independent. Most or probably all of the

DWD gauge data have been used for radar data adjustment, while RADOLAN and RADKLIM share

the same reflectivity measurements and some of their processing and correction algorithms. However,

the rainfall data intercomparison dataset can be used to evaluate the quality of the radar data products

by analyzing their spatial and temporal distribution in any individual study area within Germany and

by comparison with the additional collected information. This way, it is possible to describe and assess

the spatially and temporally varying radar data quality regarding the reflectivity and the applied

conversions, corrections and gauge adjustment. Thus, the dataset presented in this paper can help to
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build confidence for using radar data or also support the decision not to use them due to data quality

issues in the respective study area. Furthermore, it also constitutes a spatially highly resolved rainfall

statistics geodataset for the period 2006 to 2017, which can be used for statistical rainfall analyses or to

derive model inputs.

The generated dataset is described in Section 2, and in Section 3, information on the original input

data sources, a detailed description of the data processing, the calculated precipitation statistics and

additional parameters, as well as an evaluation on the quality and completeness of the dataset are

provided. Finally, in Section 4, further notes on the usage of the dataset and a brief application example

are provided.

2. Data Description

The generated rainfall data intercomparison dataset described in this paper consists of two vector

format point shapefiles, which can be read by all common Geographic Information Systems (GIS).

The spatial extent of both files covers the area of the Federal Republic of Germany and the temporal

period ranges from 2006 to 2017.

The dataset comprises the following shapefiles radar_comparison.shp and gauge_comparison.shp.

• Radar_comparison.shp: Point data of the centroids of the RADKLIM data grid (1 km resolution)

clipped to Germany. The spatial reference is a polar-stereographic projected Cartesian coordinate

system defined by DWD for their radar composite products (see [13] for more details on this

custom projection referred to as ‘radar projection’ throughout this paper). This file is subsequently

referred to as ‘RADKLIM and RADOLAN radar precipitation dataset’ or ‘radar shapefile’.

• Gauge_comparison.shp: Point data of rain gauges with the geographic coordinate system WGS 84 as

a spatial reference. This shapefile is subsequently referred to as ‘rain gauge precipitation dataset’

or ‘rain gauge shapefile’.

The objective of the data collection was to provide an easy-to-use dataset that enables also

nonspecialists from different communities (geosciences, hydrology, meteorology, and environmental

planning) to get quick insights into the properties of the radar datasets and, thus, to help improve the

usability of RADKLIM and RADOLAN. Consequently, the dataset was published in the widespread

shapefile geodata format in order to provide all collected information in one attribute table and enable

an easy and straightforward usage in all common GIS as well as data exports to other tabular data

formats. Both shapefiles contain a variety of attribute fields including a series of aggregated rainfall

statistics calculated from all three precipitation datasets for comparison as well as metadata on gauge

and radar pixel ID numbers, height above sea level, and some dataset-specific metadata such as

distance to next radar, full gauge station names, and gauge measurement periods.

A summary of the most important attribute fields of the dataset is provided in Table 1 and the

entire list of attribute fields is included in the metadata description [14].
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Table 1. Overview and description of the most important attribute fields contained in the rainfall data

intercomparison dataset. All fields marked with * were calculated for all three precipitation datasets,

fields marked with ** were calculated only for the two radar datasets. These fields are prefixed with

“RK_” (derived from the hourly RADKLIM RW product), “RO_” (RADOLAN RW) or “G_” (rain gauge

data) in the attribute table.

Field Name Parameter Description Unit

*MAP Mean annual precipitation sum 2006–2017 mm
**MAPc Mean annual precipitation sum cleaned from extreme outliers mm
*MAPc_l Mean annual precipitation sum cleaned from extreme lower outliers mm

*MSP Mean summer precipitation sum (May–October) mm
*MWP Mean winter precipitation sum (November–April) mm

*2006, . . . , *2017 Precipitation sum of the year 2006, 2007, . . . , 2017 mm
*nnan Total number of NoData entries in the period 2006–2017 -

*s_nd_1 Number of days exceeding a precipitation sum of 1 mm in the summer -

*s_MDP_1
Mean precipitation of all days exceeding a precipitation sum of 1 mm in

the summer
mm

*s_nd_20 Number of days exceeding a precipitation sum of 20 mm in the summer -

*s_MDP_20
Mean precipitation of all days exceeding a precipitation sum of 20 mm

in the summer
mm

*w_nd_1 Number of days exceeding a precipitation sum of 1 mm in the winter -

*w_MDP_1
Mean precipitation of all days exceeding a precipitation sum of 1 mm in

the winter
mm

*w_nd_20 Number of days exceeding a precipitation sum of 20 mm in the winter -

*w_MDP_20
Mean precipitation of all days exceeding a precipitation sum of 20 mm

in the winter
mm

height_dem Average height above sea level per radar pixel m
nwep Number of wind energy plants in the respective radar pixel -

wep_height Average hub height of all wind energy plants per pixel m
wep_dia Average rotor diameter of all wind energy plants per pixel m
**dist10 Distance to closest radar station in the year 2010 km
**dist17 Distance to closest radar station in the year 2017 km

3. Materials and Methods

In the following sections, input data sources and data availability are explained, data processing,

data aggregation, and validation procedures are also described for each input dataset, and, finally,

an explanation of the merging procedure applied to obtain the resulting dataset is provided.

3.1. RADKLIM and RADOLAN Radar Precipitation Dataset

3.1.1. Data Sources and Accessibility

The data basis for the radar shapefile consists of the following freely available datasets.

(a) The hourly RADOLAN RW composite

(b) The hourly RADKLIM RW composite

(c) A Shuttle Radar Topography Mission (SRTM) Digital Elevation Model

(d) A dataset on the distribution and properties of wind energy plants

(a) The RADOLAN RW dataset intended for operational, near real-time rainfall monitoring contains

hourly precipitation heights for Germany adjusted to rain gauge measurements on a 900 km * 900 km grid.

The product code “RW” refers to the final, hourly-resolved result of the RADOLAN radar data processing

chain which includes the conversion from reflectivity to precipitation heights, various correction

algorithms (e.g., for clutter and orographic beam blockage), the merging of local radar station data to a

nationwide gridded composite, as well as the adjustment to rain gauge measurements using a weighted

average of radar-gauge differences and ratios. The RADOLAN RW product is available at the DWD
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Climate Data Centre (ftp://ftp-cdc.dwd.de/pub/CDC/grids_germany/hourly/radolan/historical/bin/)

and covers the period from June 2005 until now, with the most recent file being provided ~20 min after

the end of the last measurement interval. For comparability with the other datasets, the period 2006 –

2017 was used for the dataset presented in this paper. RADOLAN data are provided in a custom binary

format with one file per hourly composite, which are collected in monthly zip archives. Additional

information on data format, projection and radar locations is provided in the accompanying project

report and file format description [8,15].

(b) The RADKLIM RW dataset [11] which is available at the DWD Open Data Portal (https://open

data.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/reproc/2017_002/bin/) contains

hourly precipitation heights for Germany adjusted to rain gauge measurements on a 1100 km * 900

km grid. This radar-based precipitation climatology dataset is a reanalyzed and temporally extended

version of RADOLAN using consistent processing techniques, several new correction algorithms

(e.g., for distance- and height-dependent signal reduction and for spokes) and more rain gauges for

adjustment. The dataset currently covers the period of 2001 to 2017, but only the years from 2006

onwards have been used for the dataset presented in this paper in order to allow for a comparison to

the shorter RADOLAN time series. The file format is similar to RADOLAN, except for the extended

grid size and the files containing more header information.

(c) The Digital Elevation Model (DEM) derived by the Shuttle Radar Topography Mission (SRTM)

contains the height above sea level in meters with a grid resolution of 25 meters and is freely available

for researchers at the EOWEB Geo Portal (https://geoservice.dlr.de/egp/).

(d) The wind energy dataset contains information on the spatial distribution and properties of

wind energy plants in Germany. It is part of a renewable energy dataset collected by [16] and provided

in shapefile format by the Helmholtz Centre for Environmental Research (Umweltforschungszentrum,

UFZ) (https://www.ufz.de/record/dmp/archive/5467/de/). Information on wind energy plants was

included in the dataset since they may cause false echoes and, thus, clutter and noise in the

radar measurements.

3.1.2. Data Processing, Aggregation, and Validation

Step 1: RADKLIM and RADOLAN raw data processing

Using the Python package radproc [17], the raw RADOLAN and RADKLIM datasets were both

unzipped separately, clipped to the Federal Republic of Germany, imported into monthly pandas

DataFrames [18] with one column per radar pixel and one row per hour and saved to two identically

structured HDF5 files [19] with one group per year and therein twelve monthly datasets.

During this process, so-called ID rasters with the locations of the numbered data pixels were

generated, one raster for the 900 km * 900 km RADOLAN grid and one for the 1100 km * 900 km

RADKLIM grid. The ID rasters are clipped to Germany and used as a basis for the raw precipitation

data clipping and for the subsequent export of results to raster datasets. A more detailed description

of the raw data processing methodology is provided by [20].

Step 2: Calculation of precipitation statistics

The calculations for all precipitation statistics are based on the generated HDF5 file and functions

from the Python packages radproc, pandas, and numpy [21]. Most of the calculated statistics are

self-explaining or comprehensively outlined in Table 1 and the metadata description (e.g., precipitation

sums per year or hydrological half-year and number of days exceeding a precipitation sum of 1 mm or

20 mm), which is why the following sections are limited to describing data cleaning and validation

approaches as well as some dataset-specific parameters.

The calculated mean annual precipitation sums showed significant differences between RADKLIM

and RADOLAN with much higher values in several thousand RADOLAN cells. These are due to a

series of extremely high outliers in the annual precipitation sums before 2010, primarily in the year 2009,

which contains sums of up to 43,155 mm. Overall, 199 cells throughout Germany exceed a precipitation
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sum of 5000 mm in 2009 in the RADOLAN dataset and a total of 928 cells exceeds 2000 mm (field

‘RO_2009’), whereas the mean annual precipitation sum for Germany amounts to ~785 mm and the

average for 2009 is still 40 mm lower (fields ‘G_MAP’ and ‘G_2009’). The outliers are caused by a

combination of false echoes (clutter) and the spreading of maximum values to their surrounding raster

cells by the so-called push-method used until July 2010 to transform radar data points from polar

coordinates to Cartesian coordinates in the gridded composite [22–24]. The term clutter refers to errors

in the radar data that are characterized by reflectivities greater than zero over longer time periods. They

are caused by reflections from, e.g., wind energy plants, high buildings, or mountains. The aggregation

of these numerous mainly low values, which can also be spread to some or all neighboring pixels by

the push-method, can result in high sums. However, these extreme values are part of the RADOLAN

RW product, which is why they have been included in the intercomparison dataset. It is important to

be aware that RADOLAN contains such extreme values. However, in order to obtain more realistic and

comparable annual precipitation sums as well as an indicator for the presence of outliers, an additional

data cleaning has been conducted, which is highlighted by a ‘c’ in the respective field names. To

exclude extreme outliers from the average calculation, the Interquartile Range (IQR) method for outlier

detection, which was developed by Tukey [25] and is also used for visualizations in box–whisker plots,

has been applied across both axes (rows/pixels and columns/years). A value x was regarded as a valid

value if it is located inside the range

Q1 − 1.5·(Q3 − Q1) < x < Q3 + 1.5·(Q3 − Q1) (1)

with Q1 = first quartile and Q3 = third quartile. The thresholds were calculated for each cell across

both axes separately. If a value lies outside this range across both axes, it is flagged as an outlier and

removed from the average calculation. Using both axes was necessary in order to take local spatial

effects as well as temporal changes such as particularly dry or wet years into account.

For RADOLAN, this data cleaning affected a total of 25,282 cells. The annual averages were

reduced in 21,324 RADOLAN cells (high outliers, e.g., due to clutter were removed) with a reduction

between 2 mm and 3677 mm, whereas in 3958 cells averages were raised by 4.6 mm to 146.5 mm

(low outliers, e.g., due to missing data were removed). For RADKLIM, 32,883 cells were affected by

the outlier removal. In 12,742 RADKLIM pixels, the averages were reduced by 0.9 mm to 192.5 mm,

whereas in 20,141 pixels, the averages were raised by 0.6 to 126.3 mm. All in all, the affected RADOLAN

cells show a mean reduction of 80.4 mm, whereas the RADKLIM cells exhibit a mean raise of 9.9 mm.

Consequently, the data cleaning serves well to work out one of the major differences between the

two radar datasets. RADOLAN has a higher number of cells affected by clutter and, thus, by high

outliers, which are also much more pronounced than in RADKLIM. Thus, on the contrary, the latter

has a much higher number of cells affected by lower outliers by missing data or very low values.

Step 3: Derivation of additional parameters for radar data quality evaluation

As additional parameters that may have an influence on radar data quality, the height above sea

level, the distance from the nearest radar, and the number and properties of wind energy plants were

derived for each radar pixel.

The height above sea level can affect the radar reflectivity signal in several ways. Especially in

mountainous regions, sources of error include an overshooting of orographic precipitation, ground

clutter, partial beam blockage, and a high share of snow and ice particles, which are more difficult to

quantify than rainfall due to their larger surface and melting effects, known as the bright band. These

effects can lead either to underestimation or overestimation of the precipitation amount [4,26,27].

The distance of a pixel from the radar can also affect data quality and is mostly related to significant

underestimation of rainfall amounts at larger distances from the radar. This is due to the attenuation of

the reflectivity signal, which can be caused by the radar beam geometry, the scattering and absorption

of the radar signal by hydrometeors and potential beam blockage [7,27].
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The Digital Elevation Model was used to calculate the average height above sea level for each

1 km2 radar pixel. Averaging was necessary in order to obtain a representative height value for each

1 km2 radar pixel as the radar measurements actually also represent the average precipitation per

square kilometer. The single tiles of the DEM were merged, reprojected to the radar projection, clipped

to Germany, and aggregated by calculating the mean height per pixel in the RADKLIM ID raster, which

the aggregated DEM was snapped to in order to obtain congruent pixel locations and extent.

The quality of the derived height was validated against the height of the gauge stations taken

from the gauge metadata considering all pixels that contain a gauge. As shown in Figure 1, both

datasets show a high conformity with a Pearson correlation coefficient of r = 0.98, but slightly higher

DEM values and expectedly higher differences in higher altitude.

 

Figure 1. Comparison of height above sea level derived from the gauge metadata (field ‘G_height’)

and from the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) aggregated to

1 km2 (‘height_dem’) for the 997 points in the gauge shapefile.

The distance to the nearest radar is split into four separate fields, which is due to changes in

the radar network (new stations or altered locations) and the difference in the radar radius used for

RADKLIM (128 km) and RADOLAN (150 km). As there were no changes to the radar hardware in the

years 2010 and 2017, the radar stations for these two years were digitized from the coordinates given

in [13] and the Euclidean distance of each pixel to the nearest radar within the given radius and year was

calculated in the radar projection for RADKLIM and RADOLAN, respectively. However, the calculated

maximum distances did not match the radar ranges that are visible in the precipitation composites

since the calculated radius was too small. Consequently, the radius was extended in order to fill out

the entire radar range and to obtain valid distance values for each pixel. As a result, the maximum

distance values exceed the respective radius given by DWD by between 3.5 km in Northern Germany

and up to 10 km in Southern Germany. This effect can be explained by the polar-stereographic radar

projection’s increasing distortion of area towards the south and the differences between planar and

geodesic distance calculations. Whereas the planar Euclidean distance corresponds to the length of

a straight line on a plane surface, the geodesic line is the distance between two points on a curved

surface, such as the Earth. Since the geodesic distance is greater and a projection to a planar surface

tends to stretch surfaces in order to obtain a Cartesian grid, a geodesic line transformed into a planar

projected coordinate system (such as the radar projection defined by DWD) is longer than a straight

line drawn on a planar surface. The assumption, that the radar radius given by DWD is actually a

geodesic distance and does not correspond to 128 or 150 km in their custom projected stereographic

coordinate system could be confirmed by a comparison of planar and geodesic buffers around the

radar locations with aggregated precipitation composites (see Figure 2). A geodesic buffer with a

distance of 128 km around the radar locations is perfectly aligned with the radar ranges observed from
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the precipitation composites, but the maximum distance measured in the radar projection was 3.5 to

10 km higher. In contrast to this, a planar buffer of 128 km is too small and does not cover the actual

radar range.

 

Figure 2. Differences between planar and geodesic distance calculation in the projected, Cartesian

stereographic coordinate system defined for the radar products by Deutscher Wetterdienst (DWD).

The very low precipitation values in the northern area, which are due to several months of missing

data during the upgrade of the radar Flechtdorf in 2014, provide an ideal radar range for the

distance validation.

For the derivation of the three parameters related to wind energy plants (count, mean hub height

and mean rotor diameter per radar pixel), the RADKLIM IDs were extracted to the wind energy point

shapefile and summary statistics for each pixel were calculated. Subsequently, the statistics were

exported to three separate rasters based on the RADKLIM ID raster.

Step 4: Creation of the output dataset

In order to prepare the concluding data collection step, the RADKLIM ID raster for Germany

was converted to an ArcGIS file geodatabase point feature class containing the centroids of all 1 km2

RADKLIM grid cells. Subsequently, a list of all rasters which are supposed to be included in the dataset

was created and their pixel values were extracted to the respective point features based on location.

The resulting dataset comprises 392,529 point features (rows in the attribute table) on a regular

1 km grid and the attribute table contains 67 fields (columns).
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3.2. Rain Gauge Precipitation Dataset

3.2.1. Data Source and Accessibility

The rain gauge RR data in 1-minute resolution used for this dataset are freely available in the

DWD Open Data Portal (https://opendata.dwd.de/climate_environment/CDC/observations_germany/c

limate/1_minute/precipitation/). Measurement data are provided as zipped text files with one file per

station and month and sorted in year folders. Downloading the dataset can be rather tedious as there is

no option to automatically download an entire year folder although there are thousands of files per year

which are not collected in any zip archives. The data files have an aperiodic structure, which means

hours or days without precipitation are summarized in one line. Next to the precipitation data are

zip archives with several metadata text files for each station containing information on measurement

periods, devices, and time zones as well as station coordinates, height above sea level, and full station

names. An additional metadata text file provides a summary of all gauges describing their coordinates,

height, names and measurement periods.

For the analysis period 2006 to 2017, the precipitation was measured by tipping bucket or OTT

Pluvio rain gauges at most of the stations and the data are provided in UTC time zone since the

year 2000.

3.2.2. Data Processing, Aggregation and Validation

Step 1: Data availability check, data processing, and data cleaning

All precipitation data files for the period 2006 to 2017 were downloaded and unzipped into year

folders using Python. Subsequently, all data were imported and converted into periodic monthly

pandas DataFrames with one column per gauge and one row per minute. These DataFrames were

then saved into the same uniform HDF5 file format as the radar data with one group per year and

therein twelve monthly datasets. Internally, the data import and preprocessing is divided into several

consecutive parts. First, data availability and completeness were checked and a dictionary with lists of

files for import sorted by month was generated. For every year and station, the number of available

month files was counted. If one or more month files were missing, the remaining files for this station

were removed from the lists and all values for this station were set to pandas’ missing data value NaN

throughout the entire year. This resulted in a loss of between 0.9 % of gauges in 2014 up to 20.8% in

2006 with an average loss of 4% (37 gauges) for the above period, but this data cleaning is necessary in

order to reduce the bias of subsequent aggregated statistics due to incomplete time series and to obtain

more reliable data for comparison. Next, each file was imported, and the three precipitation data

columns representing weighing method (RS_01), dropper (RTH_01), and tipping bucket (RWH_01)

measurement devices were merged and converted into a single-column DataFrame. Usually, only one

data column contains valid values at a time, but in some cases, e.g., due to device changes or due to

the use of ombrometers providing a combination of dropper and tipping bucket, there can be two

columns with non-NaN values. With respect to the measurement accuracy and resolution, the value

from the ‘RS_01’ column (weighing method), which was measured by Pluvio rain gauges in most

cases, was selected where available. If it is NaN at the respective interval, the value from the ‘RTH_01’

(dropper) column was selected and if values in both of these columns are NaN, the value from the

‘RWH_01’ (tipping bucket) column was selected. Upon resampling, all gaps in the aperiodic data were

filled with zeros since—assuming the data are correct—only rainless periods are summarized and NaN

intervals are indicated by the value −999 in the original data. Finally, for each month, all single-column

DataFrames were concatenated and the monthly DataFrames were saved to HDF5.

However, data validation showed that the raw gauge data contain a series of erroneous or at

least questionable values, which could be summarized into three classes outlined below. Whereas

comparable values were kept in the RADKLIM and RADOLAN data, they need to be corrected in the

gauge dataset, which is regarded as ground-truth reference for the evaluation of the radar datasets.
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Consequently, an additional iterative data cleaning procedure has been applied to the HDF5 file

containing the processed gauge data in order to account for each of these error types (see Figure 3):

1. Several extremely high minute values (121 min intervals between 312.44 and 487.56 mm at station

01669 in January 2008), which are regarded as impossible. Consequently, all intervals exceeding

100 mm were replaced by NaN in the HDF5 file without any further checks. The high threshold

of 100 mm was chosen in order to ensure that no heavy rainfall events that may have been saved

as aggregated value (e.g., a daily sum), e.g., due to hardware issues, are erased from the data

without any further checks.

2. Very high values with missing entries or zeros in the raw data several minutes or hours beforehand

(e.g., 57.27 mm at station 07104 at 06.06.2011 10:49 with previous entry 0.0 mm at 10:02; 55.17 mm

at station 05158 at 30.09.2006 13:08 with previous entries all 0.0 mm). Such high values could be

either erroneous data or also sum values for a previous time period during which a malfunction

of the gauge occurred and the precipitation sum was added later. For such values, it is difficult to

tell which of these cases holds true and how long the summarized period has been. However,

as the gauge dataset needs to be reliable at least at an hourly temporal resolution for subsequent

comparison to the radar data, a three-step validation was applied: First, all intervals exceeding

4 mm/min were regarded as potentially erroneous and identified from the HDF5 file. Second,

for all exceeding intervals, the precipitation values of the gauge during the previous hour were

checked. If there are any non-zero precipitation values, the gauge was assumed to have worked

correctly and the value was kept. Third, if the gauge indicated no precipitation during the previous

hour, the precipitation amount of the two adjacent hours of the corresponding RADKLIM pixel

was consulted. If any of these indicated precipitation, the gauge value was kept. If both hours

have a value of 0.0 mm at the RADKLIM pixel, the exceeding gauge value was set to NaN since

it can either be considered as erroneous or the actual precipitation may have occurred at some

unknown time in the past and the value is not representative for the point of time under review.

3. Sequences of several consecutive minutes with remarkably high values (e.g., at station 02532 on

15.06.2006, there are four consecutive entries with 10.75 mm/min between 8:01 and 8:04 AM).

To address potential errors due to value repetitions in the data and their potentially significant

effects on data aggregation results, the intervals exceeding 4 mm/min were additionally checked

for the time between exceedances. If there are more than two consecutive intervals exceeding

4 mm/min, all intervals starting from the third were set to NaN.

 

Figure 3. Schematic rain gauge data cleaning workflow.

The reasons for the observed errors and uncertainties are largely unknown and not indicated in

the sparse gauge data documentation. It can be assumed, though, that several of the high outliers are

actually sum values of longer time periods due to temporary malfunctions of the devices. Especially
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during heavy rainfall events measured by tipping bucket gauges, there may be design-inherent

difficulties to continuously detect rain rates with high intensities. Errors related to missing NoData

values (see Step 3 below), however, can most likely be attributed to data processing issues.

All in all, the number of gaps as well as unexpected and unexplainable errors in the raw gauge

data is much higher than in the radar data, whereas the documentation of gauge data formats is much

sparser and less comprehensive. Consequently, the gauge data processing necessitates a much higher

effort for the handling of missing or erroneous data. Regarding the missing data, 435 out of 997 gauges

in the final dataset have a largely complete time series without any hours regarded as NaN (field

‘G_nnan’, see Step 3 below). Moreover, for 598 gauges the number of NaN values is sufficiently low to

have all annual precipitation sums for the entire period of 2006 to 2017 calculated. As for the radar

data, all precipitation statistics calculated in the following are based on the generated HDF5 file.

Step 2: Creation of a point shapefile with gauge locations

Besides the precipitation data preprocessing, an ArcGIS file geodatabase point feature class with

all gauge locations as well as metadata on beginning and end of the measurement period, station name,

and number; height above sea level; and the federal state was generated from the metadata summary

file. Since the gauge locations are provided as geographic coordinates, the spatial reference of this

feature class is the Geographic Coordinate System WGS 84. Moreover, the RADKLIM and RADOLAN

cell IDs corresponding to each station were extracted from the RADKLIM and RADOLAN ID rasters.

The new ID fields added to the attribute table are the basis for the final merging of the gauge and

radar datasets described in Section 3.3, since they provide the information in which RADKLIM or

RADOLAN cell the respective gauges are located.

Step 3: Calculation of precipitation statistics

Most of the precipitation statistics calculated and the functions applied on the gauge dataset are

identical to those for the radar datasets. But, in contrast to the calculations for the radar data, results

are exported to the feature class attribute table directly from the DataFrames and without storage of

intermediate files. The only major difference in the data exported to the feature classes pertains to the

annual precipitation sums. In contrast to the radar dataset, the cleaned sums after the removal of low

outliers, which is explained in Section 3.1.2, were exported for the gauge dataset. This is necessary due

to erroneous values in the original gauge data. For gauge no. 01346, the data files contain the value 0.0

throughout the entire years 2006, 2007, and most of 2008 resulting in incorrect annual precipitation

sums of 0 mm, 0 mm, and 32.29 mm, respectively. As this leads to heavily biased annual averages

and because the gauge dataset values need to be regarded as a ground truth for subsequent data

comparisons, these values must not be exported to the final dataset and were removed as outliers

beforehand. Yet, a comparison of the cleaned and uncleaned annual sums showed that only one other

gauge, no. 04501, which has an annual precipitation sum of 21.9 mm in the year 2006, is affected by

comparable errors.

For the count of NaN values (field ‘G_nnan’), the different temporal resolutions of gauge (1 min)

and radar datasets (60 min) had to be equalized in order to obtain comparable values. Hence, the gauge

data were aggregated to hours whereby an hour was set to NaN if more than 10 out of 60 min intervals

contain NaN values. Additionally, as stations with less than 12 monthly data files for one year are not

contained in the HDF5 file for the respective year, the number of hours per missing year was added

to the calculated NaN counts. Consequently, the total NaN count is the sum of NaN values actually

contained in the HDF5 file plus the number of hours of each year removed by data cleaning procedures.

Step 4: Removal of gauge points with incomplete data collection

After the export of the annual precipitation sums, gauge points without precipitation data or

without corresponding RADKLIM or RADOLAN cell ID—which can happen if they are close to the
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national border in an area not covered by radar—are deleted in order to keep only gauges with a

complete dataset for comparison with the radar data.

The resulting rain gauge point shapefile comprises 997 point features (rain gauges) spread over

Germany with a total of 37 fields in the attribute table.

3.3. Merging the Datasets

3.3.1. Methodology

In order to merge both precipitation datasets to the final rainfall data intercomparison dataset,

both feature class attribute tables were joined to each other based on the RADKLIM ID. On the one

hand, the gauge values were joined to the radar feature class by performing an outer join to keep all

radar values. For radar pixels that contain a gauge, the respective gauge values were appended to the

attribute table, whereas, for radar pixels without a gauge, the fields for gauge data contain NoData

values (<Null>). On the other hand, the values of radar pixels containing a gauge were joined to

the gauge feature class using an inner join that only keeps features with common RADKLIM IDs.

Consequently, the gauge feature class is actually a subset of the radar feature class which contains only

complete data collections for intercomparison as well as accurate gauge locations instead of radar grid

cell centroids.

Finally, for publication, both feature classes were exported to shapefiles which can be read by

all common GIS. However, shapefiles are not able to store the feature class-specific <Null> values

(these are replaced by 0 upon export). Since in the radar feature class, <Null> values represent the

status ‘no coverage’ (a pixel is either not covered by any radar or does not contain a gauge), which

can be important for intercomparison, this information needs to be kept. Hence, to distinguish the

actual value 0 from <Null> values, the latter were replaced by the value −99999 in both feature classes

before export. Contrary to the radar shapefile, in the gauge shapefile, missing annual precipitation

sums received the value 0 because the years are not necessarily uncovered but the data may have been

removed due to incompleteness or erroneous data. Consequently, this shapefile contains −99999 only

for parameters which could not be calculated such as the mean daily precipitation exceeding 20 mm if

there is actually no such day.

3.3.2. Resulting Dataset

The final radar shapefile still comprises 392,529 point features (rows in the attribute table) on a

regular 1 km grid, but after joining the gauge attribute fields, the attribute table now contains 98 fields

(columns). The final gauge shapefile comprises 997 point features with exactly the same 98 fields as the

radar shapefile in its attribute table.

All parameters that were calculated for two or all three rainfall datasets were prefixed with

RK_ (RADKLIM), RO_ (RADOLAN), or G_ (Gauges) to identify the data origin. Thus, to compare,

e.g., the mean precipitation sum in the hydrological winter half-year between all three precipitation

datasets, the fields ‘RK_MWP’, ‘RO_MWP’, and ‘G_MWP’ need to be selected.

4. Data Use and Application

The rainfall data intercomparison dataset presented in this paper can be directly imported into all

common GIS due to its shapefile format. It can be used for the creation of maps at any scale within

Germany in order to, e.g.,

• compare the rainfall datasets with each other and evaluate their quality,

• identify the dataset best-suited for the respective study area and application,

• improve the understanding of the inherent bias and error structure, especially of the two radar

datasets, and to

• provide precipitation maps and statistics as well as model inputs for the covered time period.
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As an example for a straightforward comparison of the gauge and RADKLIM datasets, Figure 4

shows the cleaned mean annual precipitation sums of the gauges (gauge shapefile, field ‘G_MAPc_l’)

as well as the RADKLIM mean annual precipitation sums (radar shapefile, field ‘RK_MAP’).

 

Figure 4. Mean annual precipitation sum 2006–2017 calculated from rain gauges (map on the left) and

RADKLIM (map on the right). The dashed rectangle in the RADKLIM map indicates the area around

the radar station in Hanover discussed in the text.

Besides the precipitation averages, the rain gauge data-based map (Figure 4 on the left) also shows

the nationwide spatial distribution of gauge stations in the gauge shapefile, whereas the RADKLIM

map (Figure 4 on the right) shows the clipped 1 km2 grid of the radar shapefile. The comparison of both

maps shows a mainly consistent spatial precipitation distribution in the gauge and RADKLIM datasets

with mountain ranges being distinguishable and a decrease of precipitation amounts from west to east,

which is characteristic for the transition from a maritime to a more continental climate in Germany.

However, the maps also indicate slightly higher gauge values in some regions and the RADKLIM map

shows several spatial structures that can be attributed to radar artifacts. As an example, there is a

series of striking clusters of pixels with outstandingly low and high values around the radar station

in Hanover, Lower Saxony, as well as two lines of pixels with remarkably low values running from

the radar station in western and southwestern directions. The former are insufficiently corrected or

overcorrected (‘Reverse Speckle’) false echoes, which are a common problem due to the low radar

beam height at close range from the radar, whereas the latter are so-called spokes, which can occur if

the radar beam is blocked close to the radar or if an azimuth angle is not scanned at all [10].

Beyond the applications presented above, the rainfall data intercomparison dataset can also

be used for statistical analyses. Examples include the calculation of differences and ratios between

precipitation datasets, exploratory data analysis, plotting or the fitting of regression models in order to

analyze the correlations and dependencies between the RADKLIM and RADOLAN data and other

parameters such as the height above sea level or the distance to the next radar. A straightforward way

for users of ArcGIS to import the intercomparison dataset into the Python ecosystem, which provides
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rich functionality for statistical analyses, is shown in Figure 5. It shows the import of the gauge shapefile

attribute table into a DataFrame in Python using the radproc package in a Jupyter Notebook [28] and

how to plot selected data columns against each other as a scatter plot. This quick analysis confirms the

assumption derived from the map comparison (see Figure 4) that gauge and RADKLIM values match

quite well in general, but the gauge values tend to be higher than the RADKLIM values.

 

Figure 5. Importing the gauge shapefile into a DataFrame and plotting the mean annual precipitation

sums of gauges and RADKLIM against each other.
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